HOW CYCLISTS COMMUNICATE THEIR INTENT?

Ali Mohammadi

Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Sweden SHAPE-IT ESR 14

The main objective of this study is to understand vehicle-cyclist interaction and investigating how cyclists communicate their intentions in traffic. This study will quantitative models for propose intentions predicting cyclist at intersections.

AUTOMATED VEHICLES' (AV) SAFETY IN THE PRESENCE OF VULNERABLE **ROAD USERS**

- The majority of cyclists fatalities in Europe occur between vehicles and bicyclists, and most of these crashes happen at unsignalized intersections.
- There are some concerns about the safe performance of AV in the presence of vulnerable road users especially cyclists.
- Different active safety systems have been developed to address these types of crashes.

• This study will develop model to help active safety cyclists.

Goal:

- In this research, we will assess how cyclists interact with vehicles; what visual cues cyclists use when interacting with other road users, and how they communicate their intent, especially with vehicles at interactions.
- We will produce quantitative models to predict cyclists' intent so that the vehicles could behave based on that prediction.

DATA 1 – FIELD DATA COLLECITON

• Since many of the interactions between cyclists and vehicles happen at unsignalized intersections, we will focus on this scenario.

• The figure above shows the layout of our field experiment and the moving direction of involved objects (arrows).

avoiding crashes with

• Once data is collected (trajectories and visual information) we can detect the interaction events and analyze them.

DATA 2 – SIMULATOR EXPERIMENT

- The second dataset is coming from a cycling simulator at VTI facilities.
- The exact same environment as in the field data collection will be simulated in this experiment to make it possible to compare the results between these two data sources.

- 11 trials are designed to observe the under different participants behavior circumstances.
- The variables that will change during these interaction include visibility condition, time to arrival to the intersection, and vehicle's speed.

FUTURE WORK

- Extracting interaction events from the field data collection
- Fitting a statistical model, for predicting cyclist behavior at this situations.
- Running the cycling simulator experiment

SUPERVISON AND CONTACT DETAILS

Prof. Dr. Marco Dozza Supervised by: Prof. Dr. Gustav Markkula

ali.mohammadi@chalmers.se Contact details:

AFFILIATIONS AND ACKNOWLEDGMENT

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement 860410

