
• Pedestrian-Vehicle Interaction Extractor:

• Results: More accurate.
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OVERALL PREDICTION FRAMEWORK

TRANSFERABLE MODELS

Abstract: This research project aims to use
deep learning (DL) to predict pedestrian
behavior in urban traffic. We have proposed
two novel DL methods that consider
pedestrian social interactions and pedestrian-
vehicle interactions in prediction. We use the
real-world urban traffic dataset released by
Google Waymo to build our models and try to
develop transferable models. The outcomes of
this project contribute to the development of
automated vehicles and driver assistant
systems.

• Motivation:
Accurately predicting pedestrian behavior is
crucial for automated vehicles to better
understand pedestrians in complex scenarios to
avoid pedestrian-vehicle collisions.
• Problem definition:

• Dataset - Waymo Open Dataset

INTRODUCTION

• Question: Could the model trained on one 
dataset be used on a new untrained dataset
that has a different distribution?

• Goal: To develop a transferable model that 
learns generic motion features.

• Method: Transfer learning. Minimizing the 
distribution gap.
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PEDESTRIAN SOCIAL INTERACTIONS
• Social Interaction Extractor:

Comparing with Social-STGCNN (SOTA):
ü Do not need to construct the graph.
ü Learn the weights, do not have non-linear 

calculation.
• Results: More accurate and faster.
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Time (ms) Preprocessing Inference Total
Social-STGCNN 12.61 3.20 15.81
Social-IWSTCNN (ours) 0.23 (x 54.8) 3.15 3.38 (x 4.7)

§ Dense urban
traffic scenes

§ Vehicle’s view
§ 450 scenes
§ 20,967 frames

Challenges:
§ Randomness
§ Interactions
§ Representations
§ Real-world 

scenarios

PEDESTRIAN-VEHICLE INTERACTIONS
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More Info: This work has been published and
presented on IEEE-IV 21 conference. The paper 
can be found here (or scan the QR code): 
https://doi.org/10.1109/IV48863.2021.9575958

§ Observation: 3.2 s
§ Prediction: 4.8 s

Model ADE FDE Interaction Used in the Model
LSTM 0.392 0.844 No Interaction
Social-LSTM (2016) 0.402 0.840 Social Interaction
Social-GAN (2018) 0.386 0.826 Social Interaction

SI-PVI-LSTM (ours) 0.372 0.796 Social Interaction
Pedestrian-Vehicle Interaction

More Info: This work has been published and
presented on 8th IEEE-ICCAR conference. The 
paper can be found here (or scan the QR code): 
https://doi.org/10.1109/ICCAR55106.2022.9782673
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